西藏始新世狭叶梅属(Palibinia)的发现及其地质学和生物学意义

周浙昆, 王楠, 刘佳, 黄健, 李树峰, 苏涛. 西藏始新世狭叶梅属(Palibinia)的发现及其地质学和生物学意义[J]. 第四纪研究, 2024, 44(6): 1469-1481. doi: 10.11928/j.issn.1001-7410.2024.06.01
引用本文: 周浙昆, 王楠, 刘佳, 黄健, 李树峰, 苏涛. 西藏始新世狭叶梅属(Palibinia)的发现及其地质学和生物学意义[J]. 第四纪研究, 2024, 44(6): 1469-1481. doi: 10.11928/j.issn.1001-7410.2024.06.01
周浙昆, 王楠, 刘佳, 黄健, 李树峰, 苏涛. 西藏始新世狭叶梅属(Palibinia)的发现及其地质学和生物学意义[J]. 第四纪研究, 2024, 44(6): 1469-1481. doi: 10.11928/j.issn.1001-7410.2024.06.01 ZHOU Zhekun, WANG Nan, LIU Jia, HUANG Jian, LI Shufeng, SU Tao. The discovery of the Eocene genus Palibinia from Xizang, China and its geological and biological significances[J]. Quaternary Sciences, 2024, 44(6): 1469-1481. doi: 10.11928/j.issn.1001-7410.2024.06.01
Citation: ZHOU Zhekun, WANG Nan, LIU Jia, HUANG Jian, LI Shufeng, SU Tao. The discovery of the Eocene genus Palibinia from Xizang, China and its geological and biological significances[J]. Quaternary Sciences, 2024, 44(6): 1469-1481. doi: 10.11928/j.issn.1001-7410.2024.06.01

西藏始新世狭叶梅属(Palibinia)的发现及其地质学和生物学意义

  • 基金项目:

    国家重点研发计划项目(批准号: 2022YFF0800800)、国家自然科学基金面上项目(批准号: 42372033)、云南省中青年学术和技术带头人后备人才项目(批准号: 202305AC160051)和中国科学院西双版纳热带植物园"十四五"科技创新规划项目子课题(批准号: XTBG-1450101)共同资助

详细信息

The discovery of the Eocene genus Palibinia from Xizang, China and its geological and biological significances

More Information
  • 本研究重新研究了发现于西藏班戈盆地牛堡组、最初被定为似班克木属(cf. Banksia)的叶化石标本。研究结果表明: 这些标本的叶形、叶片大小和叶脉特征均与狭叶梅属(Palibinia)的欧亚狭叶梅(Palibinia laxifolia Korovin)一致, 因此将这些标本修订为欧亚狭叶梅。狭叶梅属是一类已经灭绝的植物, 依据目前所保存及可观察到的形态特征, 还不能确定狭叶梅属与现代植物类群的亲缘关系。化石记录显示: 狭叶梅属最早出现于广东三水、湖南衡阳、江苏仪征等地的古新世地层, 在始新世狭叶梅属的分布区进一步扩大, 中始新世狭叶梅属出现在青藏高原、中亚、欧洲和北美, 渐新世狭叶梅属的分布区进一步缩小, 在晚渐新世以后完全消失。此前的研究从狭叶梅属的形态特征推论, 该属是干旱环境的指示植物。本研究对全球狭叶梅属分布的24个化石产地古气候模拟数据进行了分析, 结果表明, 狭叶梅属是一类生态幅较为广泛的植物, 基于西藏蒋浪和四川热鲁中始新世植物群重建的古气候结果, 也进一步证明狭叶梅属可分布于湿润环境, 不宜作为干旱环境的指示植物。古气候模型模拟还表明狭叶梅属分布的区域年均温都比较高, 是一类适应于热室气候环境的植物, 属于古近纪中国东南陆地生态系统的重要类群。

  • 加载中
  • 图 1 

    狭叶梅属在全球的地史分布

    Figure 1. 

    Global geological distribution of Palibinia

    图 2 

    蒋浪化石点位置(a)及地质概况简图(b)

    Figure 2. 

    Location of the Jianglang fossil site(a)and simplified geological map(b)

    图 3 

    产自西藏班戈牛堡组的欧亚狭叶梅Palibinia laxifolia Korovin叶片照片

    Figure 3. 

    Leaves of Palibinia laxifolia Korovin from the Niubao Formation of Bange basin of Xizang

    图 4 

    欧亚狭叶梅Palibinia laxifolia Korovin叶片形态细节

    Figure 4. 

    Details of leaf morphology of Palibinia laxifolia Korovin. In Fig. 4, 1 is the main pulse, 2 is the secondary pulse, and 3 is the secondary pulse branch; scale bar=1 mm

    图 5 

    不同时代24个狭叶梅属化石点古气候差异的箱型图

    Figure 5. 

    Box plot of paleoclimate differences at 24 fossil sites in different geological ages. Box plots illustrating the paleoclimate are(a)annual precipitation, (b)precipitation of coldest quarter, (c)precipitation of warmest quarter, (d)average annual temperature, (e)mean temperature of coldest quarter, and(f)mean temperature of warmest quarter in different periods. The p-values displayed above each figure represent the results of ANOVA test, which assesses whether there are significant differences in the mean values of paleoclimate factors across the five geological periods. A p-value of ≤ 0.05 indicates a significant difference; a p-value of ≤ 0.01 indicates a highly significant difference; a p-value of ≤ 0.001 indicates an extremely significant difference; and a p-value of ≥ 0.05 indicates no significant difference. In addition, each figure also illustrates the differences in paleoclimate factors between pairs of geological periods. The number of asterisks(*)indicates the significance level of the differences: *: p < =0.05, **: p < =0.01, ***: p < =0.001, ns: p≥0.05. The boxes represent the 25th and 75th percentiles, the horizontal line represents the median, the whiskers represent the 5th to 95th percentiles, and the circles represent outliers

    图 6 

    产自湖南茶山坳古新统(a,b,d,e)和广东南海盐布(c)始新统的欧亚狭叶梅

    Figure 6. 

    Leaves of Palibinia laxifolia Korovin from the Paleocene of Chashanao, Hunan(a, b, d, e)and the Eocene of Yanbu, Guangdong(c); scale bar=1 cm

    图 7 

    欧亚狭叶梅在中国古近纪的分布

    Figure 7. 

    Paleogene distribution of Palibinia from China

    表 1 

    狭叶梅属分布点及古气候模拟数据信息

    Table 1. 

    Global distribution of Palibina and their paleoclimate simulation

    编号 化石点 国家/地区 时代 纬度
    (°)
    经度
    (°)
    年均温
    (℃)
    夏季均温
    (℃)
    冬季均温
    (℃)
    年降水
    (mm)
    夏季降水
    (mm)
    冬季降水
    (mm)
    参考文献
    1 大仪集,阜宁组 中国,江苏 古新世 32.55 119.25 19.6 28.0 11.7 1332 439 301 [2]
    2 清江,清江组下段 中国,江西 古新世 28.05 115.29 21.8 30.2 12.6 920 346 131 [2]
    3 三水,布心组 中国,广东 古新世 23.22 113.02 22.8 29.6 14.1 1398 663 98 [4]
    4 衡阳,茶山坳组 中国,湖南 古新世 26.93 112.68 20.3 29.7 9.2 1153 490 113 [10]
    5 当阳,方家河组 中国,湖北 古新世 30.80 111.79 20.4 29.2 12.0 519 198 90 [2]
    6 蒋浪,牛堡组 中国,西藏 中始新世 31.63 90.03 22.6 40.7 4.7 235 127 6 [19]
    7 理塘,热鲁组 中国,四川 中始新世 29.59 100.19 19.8 34.5 4.5 531 265 21 [1]
    8 绿河组 美国,犹他 中始新世 39.90 -109.16 20.7 35.7 8.8 429 65 123 [16]
    9 绿河组 美国,科罗拉多 中始新世 39.48 -108.60 20.8 35.8 8.9 479 66 147 [16]
    10 临江,临江组 中国,江西 晚始新世 28.01 115.41 27.2 39.6 11.5 866 375 22 [2]
    11 巴德黑兹 土库曼斯坦 晚始新世 35.65 62.28 26.2 46.5 7.7 91 34 10 [12]
    12 艾尔-奥伊兰杜斯 土库曼斯坦 晚始新世 35.80 61.46 26.4 46.8 7.7 87 31 10 [12]
    13 Tortmola植物群 哈萨克斯坦 晚始新世 48.55 65.70 17.5 41.3 -2.2 359 46 143 [31]
    14 吴城,五里堆组 中国,河南 晚始新世 32.43 113.46 24.5 41.2 6.6 815 343 18 [5]
    15 本布里奇 英国,怀特岛 晚始新世 50.74 -1.35 19.5 35.7 8.7 1078 54 460 [15]
    16 张易,大坪沟 中国,宁夏 始新世 35.82 106.10 15.4 33.5 -1.8 646 247 50 [3]
    17 衡阳,鱼子塘 中国,湖南 始新世 26.89 111.77 27.0 40.0 11.8 710 328 24 [3]
    18 桃源,剪家溪组 中国,湖南 始新世 28.89 111.44 26.3 40.6 10.2 597 316 20 [3]
    19 天水,固原群 中国,甘肃 始新世 37.16 106.79 14.7 33.5 -3.2 725 254 75 [3]
    20 湘乡,下湾铺组 中国,湖南 始新世 27.93 112.59 26.6 40.1 11.0 676 340 26 [3]
    21 濮阳 中国,河南 始新世 35.75 115.00 21.4 40.0 2.6 841 346 49 [8]
    22 泰安,大汶口 中国,山东 始新世 35.59 117.07 20.9 39.4 1.5 879 356 61 [2]
    23 渭南,白鹿塬组 中国,陕西 渐新世 34.33 109.54 14.5 32.2 -3.2 428 232 4 [9]
    24 罗特 德国,慕尼黑 晚渐新世 50.76 -7.27 15.0 24.6 8.4 1267 124 453 [13]
    下载: 导出CSV
  • [1]

    He S L, Ding L, Xiong Z, et al. A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet[J]. Science Bulletin, 2022, 67 (21): 2245-2258. doi: 10.1016/j.scib.2022.10.006

    [2]

    李浩敏, 陈其奭. 中国江西始新统的Palibinia——兼论北半球古近纪干旱气候形成机制[J]. 古生物学报, 2002, 41 (1): 119-129.

    Li Haomin, Chen Qishi. Palibinia form the Eocene of Jiangxi, China with remarks of the dry climate mechanism of Northern Hemisphere in Paleogene[J]. Acta Palaeontologica Sinica, 2002, 41 (1): 119-129.

    [3]

    李浩敏. 我国下第三系杨梅科的一些化石及其地层意义[M]//中国科学院古脊椎动物与古人类研究所, 南京地质古生物研究所. 华南中、新生代红层. 北京: 科学出版社, 1979: 232-239.

    Li Haomin. Some fossil plants of Myricaceae from China and its stratigraphic significance[M]//Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences eds. Mesozoic and Cenozoic Red Beds of South China. Beijing: Science Press, 1979: 232-239.

    [4]

    郭双兴. 两广南部晚白垩世和早第三纪植物群及其地层意义[M]//中国科学院古脊椎动物与古人类研究所、南京地质古生物研究所. 华南中、新生代红层. 北京: 科学出版社, 1979: 223-231.

    Guo Shuangxing. Late Cretaceous and Early Tertiary floras from the southern Guangdong and Guangxi with their stratigraphic significance[M]//Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences eds. Mesozoic and Cenozoic Red Beds of South China. Beijing: Science Press, 1979: 223-231.

    [5]

    刘永安, 孔昭宸. 河南吴城晚始新世的植物化石及其在植物学、古气候学上的意义[J]. 植物学报, 1978, 20 (1): 59-65.

    Liu Yongan, Kong Zhaochen. Plant fossils of Late Eocene form Wucheng, Henan and their significance in botany and paleoeclimatology[J]. Acta Botanica Sinica, 1978, 20 (1): 59-65.

    [6]

    郭双兴. 四川理塘始新统热鲁组化石植物群特征及桉属的历史[M]//中国科学院青藏高原综合考察队. 横断山综合考察专集(2). 北京: 北京科技出版社, 1986: 66-70.

    Guo Shuangxing. Floral character of Eocene Relu Formation and history of Eucalyptus from Litang of Sichuan[M]//Team of Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences ed. Exploration of Hengduan Mountain Area(Ⅱ). Beijing: Beijing Publishing House of Sciences and Technology, 1986: 66-70.

    [7]

    陈明洪, 孔昭宸, 陈晔. 川西高原早第三纪植物群的发现及其在植物地理学上的意义[J]. 植物学报, 1983, 25 (5): 482-491.

    Chen Minghong, Kong Zhaochen, Chen Ye. On the discovery of Paleogene flora form the western Sichuan Plateau and its significance phytogeography[J]. Acta Botanica Sinica, 1983, 25 (5): 482-491.

    [8]

    陶君容. 河南濮阳发现对古气候有指示意义的植物化石——帕里宾尼亚[J]. 植物学通报, 1983, 1 (1): 50-52.

    Tao Junrong. Discovery of Palibinia from Puyang of Henan, and its paleoclimatic significance[J]. Chinese Bulletin of Botany, 1983, 1 (1): 50-52.

    [9]

    陶君容. 陕西渭南晚始新世小植物群[J]. 植物学报, 1965, 13 (3): 272-278.

    Tao Junrong. A Late Eocene florula form the district Weinan of central Shanxi[J]. Acta Botanica Sinica, 1965, 13 (3): 272-278.

    [10]

    李浩敏. 湖南衡阳盆地茶山坳早第三纪植物化石[J]. 古生物学报, 1965, 13 (3): 540-547.

    Li Haomin. Palaeogene plant remains from Chashanao of Hengyang Basin in Hunan[J]. Acta Palaeontologica Sinica, 1965, 13 (3): 540-547.

    [11]

    Zhilin S G. History of the development of the temperate forest flora in Kazakhstan, U. S.S. R. from the Oligocene to the Early Miocene[J]. The Botanical Review, 1989, 55 (4): 205-330. doi: 10.1007/BF02858522

    [12]

    Vassilevskaja N D. Eocene flora from Badkhyz in Turkmenia[M]//Dorofeev P I. Memorial Collection to AN Kryshtofovich, M-L. Moscow and Leningrad: Academy of Sciences USSR Press, 1957: 103-117.

    [13]

    Weyland H. Beiträge zur Kenntnis der rheinischen Tertiärflora: Ⅵ[J]. Palaeontographica Abteilung B, 1943, 87 (2-6): 94-136.

    [14]

    Korovin E P. New Tertiary type of fam. Proteaceae from the Middle Asia[J]. The Botanical Magazine, 1932, 17 (5-6): 506-509.

    [15]

    Reid E M, Chandler M E J. The Bembridge Flora. Catalogue of Cenozoic Plants in the Development of Geology[M]. London: Oxford University Press, 1926: 1.

    [16]

    Manchester S R, Judd W S, Kodrul T M. First recognition of the extinct eudicot genus Palibinia in North America: Leaves and fruits of Palibinia comptonifolia (R. W. Br.) comb. nov. from the Eocene of Utah and Colorado, USA[J]. Journal of Systematics and Evolution, 2024, 62 (1): 149-163. doi: 10.1111/jse.13011

    [17]

    MacGinitie H D. The Eocene Green River Flora of Northwestern Colorado and Northeastern Utah[M]. Berkeley: University of California Publications in Geological Science, 1969, 83: 1-140.

    [18]

    Takhtajian A L. Family Protoeceae[M]//Takhtajian A L. The Basis of Paleontology. Moscow: State Scientific and Technical Publishing House, 1963, 15: 593-595.

    [19]

    Su T, Spicer R A, Wu F X, et al. A Middle Eocene lowland humid subtropical "Shangri-La" ecosystem in central Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (52): 32989-32995.

    [20]

    Hetzel R, Dunkl I, Haider V, et al. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift[J]. Geology, 2011, 39 (10): 983-986.

    [21]

    Liu J, Su T, Spicer R A, et al. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 524: 33-40. doi: 10.1016/j.palaeo.2019.02.022.

    [22]

    刘佳, 宋艾, 丁林, 等. 青藏高原及其周边古近纪综合地层、生物群与古地理演化[J]. 中国科学: 地球科学, 2024, 54 (4): 1308-1342.

    Liu Jia, Song Ai, Ding Lin, et al. Paleogene integrative stratigraphy, biotas, and paleogeographical evolution of the Qinghai-Tibetan Plateau and its surrounding areas[J]. Science China: Earth Sciences, 2024, 67 (4): 1290-1325.

    [23]

    王开发, 杨蕉文, 李哲, 等. 西藏伦坡拉盆地孢粉组合的发现及其意义[J]. 科学通报, 1974, 19 (6): 281-283.

    Wang Kaifa, Yang Jiaowen, Li Zhe, et al. The discovery of the palynological assemblage from the Lunpola Basin in Xizang and its significance[J]. Science Bulletin, 1974, 19 (6): 281-283.

    [24]

    王开发, 杨蕉文, 李哲, 等. 根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其古地理[J]. 地质科学, 1975, 10 (4): 366-374.

    Wang Kaifa, Yang Jiaowen, Li Zhe, et al. On the Tertiary sporo-pollen assemblages form Lunpola Basin of Xizang, China and their paleogeographic significance[J]. Chinese Journal of Geology, 1975, 10 (4): 366-374.

    [25]

    夏位国. 西藏班戈县伦坡拉盆地伦坡拉群时代及其介形类组合[J]. 青藏高原地质文集, 1982, 4: 149-207.

    Xia Weiguo. Ostracoda fauna form Lunpola Group in Xizang (Tibet) and its geological age[J]. Tibetan Plateau Geological Collection, 1982, 4: 149-207.

    [26]

    Tang H, Liu J, Wu F X, et al. Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene[J]. Journal of Systematics and Evolution, 2019, 57 (6): 670-677.

    [27]

    Del Rio C, Wang T X, Li S F, et al. Fruits of Firmiana and Craigia (Malvaceae) from the Eocene of the central Tibetan Plateau with emphasis on biogeographic history[J]. Journal of Systematics and Evolution, 2022, 60 (6): 1440-1452.

    [28]

    Wang T X, Del Rio C, Manchester S R, et al. Fossil fruits of Illigera (Hernandiaceae) from the Eocene of central Tibetan Plateau[J]. Journal of Systematics and Evolution, 2021, 59 (6): 1276-1286.

    [29]

    Chen P R, Del Rio C, Huang J, et al. Fossil capsular valves of Koelreuteria (Sapindaceae) from the Eocene of central Tibetan Plateau and their biogeographic implications[J]. International Journal of Plant Sciences, 2022, 183 (4): 307-319.

    [30]

    黄璞, 傅强, 董重, 等. 化石植物中文名的现状、问题与建议[J]. 古生物学报, 2020, 59 (4): 479-488.

    Huang Pu, Fu Qiang, Dong Chong, et al. The Chinese names of fossil plants: Status, problems and suggestions[J]. Acta Palaeontologica Sinica, 2020, 59 (4): 479-488.

    [31]

    刘夙, 刘冰. 中国维管植物属中文普通名选定规则新探[J]. 生物多样性, 2015, 23 (2): 254-258.

    Liu Su, Liu Bing. New comments on the rules of choice of Chinese common names of genera of vascular plants in China[J]. Biodiversity Science, 2015, 23 (2): 254-258.

    [32]

    Budantsev L Y. Genus Palibinia E. Korovin[M]//Takhtajan A L. The Basis of Paleontology. Moscow: State Scientific and Technical Publishing House, 1963: 639.

    [33]

    Zhilin S G. Methodological problems of paleofloristics (by the example Kazakhstan Paleogene and Neogene flora)[M]//Zhilin S G. Development of the Flora in Kazakhstan and Russian Plain from the Eocene to the Miocene. Leningrad: Komarov Botanical Institute, Academia Scientiarum USSR, 1991: 57-88.

    [34]

    Heer O. Vbersicht der Tertiär-Flora der Schweiz[J]. Mittheilungen der Naturforschenden Gesellschaft in Zürich, 1853, 3: 131-146.

    [35]

    Berry E W. Living and fossil species of Comptonia[J]. American Naturalist, 1906, 40 (475): 485-524.

    [36]

    Doweld A B. On the nomenclature of fossil Aspleniopteris, Carpinicarpus, Comptonia, Comptoniphyllum and Dryandrophyllum (Myricaceae)[J]. Acta Palaeobotanica, 2017, 57 (2): 223-232.

    [37]

    Scotese C R, Song H J, Mills B J W, et al. Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years[J]. Earth-Science Reviews, 2021, 215: 103503. doi: 10.1016/j.earscirev.2021.103503.

    [38]

    Belda M, Holtanová E, Halenka T, et al. Climate classification revisited: from Köppen to Trewartha[J]. Climate research, 2014, 59 (1): 1-13.

    [39]

    Whittaker R H. Communities and Ecosystems[M]. New York: Macmillan Publishing, 1975: 167.

    [40]

    Quan C, Liu Z H, Utescher T, et al. Revisiting the Paleogene climate pattern of East Asia: A synthetic review[J]. Earth-Science Reviews, 2014, 139: 213-230. doi: 10.1016/j.earscirev.2014.09.005.

    [41]

    Collinson M E. Palaeofloristic assemblages and palaeoecology of the Lower Oligocene Bembridge Marls, Hamstead Ledge, Isle of Wight[J]. Botanical Journal of the Linnean Society, 1983, 86 (1-2): 177-225.

    [42]

    Kvaček Z, Erdei B. Putative proteaceous elements of the Lomatites-type reinterpreted as new Berberis of the European Tertiary[J]. Plant Systematics and Evolution, 2001, 226: 1-12. doi: 10.1007/s006060170069.

    [43]

    Zhou Z K, Wilkinson H, Wu Z Y. Taxonomical and Evolutionary implications of the leaf anatomy and architecture of Quercus L. subg. Quercus from China[J]. Cathaya, 1995, 7: 1-34. https://europepmc.org/article/cba/285743. https://europepmc.org/article/cba/285743

    [44]

    Li Y L, Kvaček Z, Ferguson D K, et al. The fossil record of Berberis (Berberidaceae) from the Palaeocene of NE China and interpretations of the evolution and phytogeography of the genus[J]. Review of Palaeobotany and Palynology, 2010, 160 (1-2): 10-31.

    [45]

    陈琳琳, 邓炜煜东, 苏涛, 等. 西藏芒康晚始新世高山栎组化石的发现及其生物地理学意义[J]. 中国科学: 地球科学, 2021, 51 (12): 2150-2162.

    Chen Linlin, Deng Weiyudong, Su Tao, et al. Late Eocene sclerophyllous oak from Markam Basin, Tibet, and its biogeographic implications[J]. Science China: Earth Sciences, 2021, 64 (11): 1969-1981.

    [46]

    贾林波, 苏涛, 李伟成, 等. 我国西南植物区系的分异: 椿榆属和臭椿属化石的启示[J]. 生物多样性, 2022, 30 (11): 22348. doi: 10.17520/biods.2022348.

    Jia Linbo, Su Tao, Li Weicheng, et al. The floristic differentiation of Southwest China: Insights from Cedrelospermum and Ailanthus fossils[J]. Biodiversity Science, 2022, 30 (11): 22348. doi: 10.17520/biods.2022348.

    [47]

    周浙昆, 刘佳, 陈琳琳, 等. 西藏新生代植物近十年来的重要发现、认识及其意义[J]. 中国科学: 地球科学, 2023, 53 (2): 193-215.

    Zhou Zhekun, Liu Jia, Chen Linlin, et al. Cenozoic plants from Tibet: An extraordinary decade of discovery, understanding and implications[J]. Science China: Earth Sciences, 2023, 53 (2): 193-215.

    [48]

    Jia L B, Su T, Huang Y J, et al. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: Implications for morphological evolution and biogeography[J]. Journal of Systematics and Evolution, 2019, 57 (2): 94-104.

  • 加载中

(7)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-08-03
修回日期:  2024-09-15
刊出日期:  2024-11-30

目录