青藏高原柴达木盆地中新世单籽豆属(Podocarpium)化石的发现及其生物地理学意义

王雪莲, 苗运法, 牛改红, 周莹莹, 杨永恒, 张腾, 赵永涛, 孟庆泉, 宋春晖, 张扬. 青藏高原柴达木盆地中新世单籽豆属(Podocarpium)化石的发现及其生物地理学意义[J]. 第四纪研究, 2024, 44(6): 1482-1494. doi: 10.11928/j.issn.1001-7410.2024.06.02
引用本文: 王雪莲, 苗运法, 牛改红, 周莹莹, 杨永恒, 张腾, 赵永涛, 孟庆泉, 宋春晖, 张扬. 青藏高原柴达木盆地中新世单籽豆属(Podocarpium)化石的发现及其生物地理学意义[J]. 第四纪研究, 2024, 44(6): 1482-1494. doi: 10.11928/j.issn.1001-7410.2024.06.02
王雪莲, 苗运法, 牛改红, 周莹莹, 杨永恒, 张腾, 赵永涛, 孟庆泉, 宋春晖, 张扬. 青藏高原柴达木盆地中新世单籽豆属(Podocarpium)化石的发现及其生物地理学意义[J]. 第四纪研究, 2024, 44(6): 1482-1494. doi: 10.11928/j.issn.1001-7410.2024.06.02 WANG Xuelian, MIAO Yunfa, NIU Gaihong, ZHOU Yingying, YANG Yongheng, ZHANG Teng, ZHAO Yongtao, MENG Qingquan, SONG Chunhui, ZHANG Yang. The discovery of Podocarpium from the Miocene of Qaidam Basin and its biogeographic implication[J]. Quaternary Sciences, 2024, 44(6): 1482-1494. doi: 10.11928/j.issn.1001-7410.2024.06.02
Citation: WANG Xuelian, MIAO Yunfa, NIU Gaihong, ZHOU Yingying, YANG Yongheng, ZHANG Teng, ZHAO Yongtao, MENG Qingquan, SONG Chunhui, ZHANG Yang. The discovery of Podocarpium from the Miocene of Qaidam Basin and its biogeographic implication[J]. Quaternary Sciences, 2024, 44(6): 1482-1494. doi: 10.11928/j.issn.1001-7410.2024.06.02

青藏高原柴达木盆地中新世单籽豆属(Podocarpium)化石的发现及其生物地理学意义

  • 基金项目:

    国家自然科学基金项目(批准号: 42202029和42271176)、国家自然科学基金国际(地区)合作与交流项目(批准号: 42161144012)、科技部第二次青藏高原综合科学考察研究项目(批准号: 2019QZKK0707)、中国科学院"西部之光-西部交叉团队"重点实验室专项项目(批准号: xbzg-zdsys-202204)和甘肃省自然科学基金项目(批准号: 24JRRA087)共同资助

详细信息
    作者简介:

    王雪莲,女,33岁,助理研究员,古生物学与地层学专业,E-mail: wangxuelian@nieer.ac.cn

    通讯作者: 苗运法,E-mail: miaoyunfa@lzb.ac.cn
  • 中图分类号: P534.62+1, Q949.751.9

The discovery of Podocarpium from the Miocene of Qaidam Basin and its biogeographic implication

More Information
  • 单籽豆属(Podocarpium)是已经灭绝的一类豆科植物, 也是新生代地层中广泛出现的类群。该属在欧亚大陆中有着丰富的化石记录, 但由于缺乏重点区域以及关键时间点的化石证据, 限制了对其演化与分布历史的认识。本研究以青藏高原东北部柴达木盆地瑙格剖面2100 m处的中新世地层中的单籽豆属为研究对象, 结合新生代以来的全球化石记录, 综合概述了该属的生物地理历史, 并依据青藏高原地区的具有准确年代控制的化石记录探讨了环境变化对单籽豆属演变的影响。研究结果表明: 1)依据柴达木盆地中中新世晚期新标本枝叶和荚果的形态比较, 将其定为柄豆荚(Podocarpium podocarpum); 2)依据已知的青藏高原化石记录表明, 单籽豆属在中新世时期的分异度最高且分布特征与全球具有同步性, 同时支持了该属通过低纬度路径扩散和传播的可能性; 3)全球范围内的干旱和降温可能不是导致单籽豆属分布区范围缩小的主要原因, 中新世之后青藏高原部分地区的地形进一步抬升通过改变降水模式促进了该属在亚洲内陆地区分范围的收缩。

  • 加载中
  • 图 1 

    单籽豆属(Podocarpium)叶片及荚果形态复原图

    Figure 1. 

    Morphological reconstruction of the Podocarpium, and modified after WGCPC[9])

    图 2 

    单籽豆属(Podocarpium)化石记录的全球地理分布图

    Figure 2. 

    The distribution of megafossil records of Podocarpium throughout the world, and drawing after Table 1

    图 3 

    柴达木盆地瑙格剖面位置及地质概况

    Figure 3. 

    The location of the Naoge section and geological features of the Qaidam Basin. (a)Distribution of study site and fossil records of Podocarpium on the Tibetan Plateau; (b)Paleogeographic location of study site during the Middle Miocene; (c)Geological map of the Naoge(A-B marks the section location); (d)Stratigraphic column of the Naoge section[53]

    图 4 

    柴达木盆地瑙格剖面上油砂山组中的柄豆荚(Podocarpium podocarpum)叶片化石标本

    Figure 4. 

    Leaves of the Podocarpium podocarpum from the Shangyoushashan Formation of Naoge section, Qaidam Basin

    图 5 

    柴达木盆地瑙格剖面上油砂山组中的柄豆荚(Podocarpium podocarpum)荚果化石标本

    Figure 5. 

    Fruits of of the Podocarpium podocarpum from the Shangyoushashan Formation of Naoge section, Qaidam Basin

    图 6 

    地质时期单籽豆属(Podocarpium)的化石点分布(古地理图依据Gplates软件)

    Figure 6. 

    The distribution of fossil sites of the Podocarpium during geological periods, and modified from Gplates

    图 7 

    青藏高原不同块体新生代以来古海拔重建图

    Figure 7. 

    History of surface elevation change across the Tibetan Plateau during Cenozoic, and modified from Ding et al.[70] and Miao et al. [73]

    表 1 

    单籽豆属(Podocarpium) 化石记录(修改自Li等[1]和Han等[2])

    Table 1. 

    Megafossil records of Podocarpium (modified from Li et al. [1] and Han et al. [2])

    序号 种名 化石类别 年代 地点 文献
    1 Podocarpium eocenicum 荚果 始新世 中国,海南省长昌盆地 [28]
    2 Podocarpium eocenicum 荚果 始新世 中国,广东省茂名盆地 [28]
    3 Podocarpium tibeticum 荚果&枝叶 始新世 中国,西藏自治区申扎县 [1]
    4 Podocarpium podocarpum 荚果&枝叶 早渐新世 中国,柴达木盆地大柴旦 [2]
    5 Podocarpium podocarpum 荚果&单叶 渐新世 中国,柴达木盆地花土沟 [29]
    6 Podocarpium podocarpum 荚果 渐新世 中国,广西自治区宁明县 [30]
    7 Podocarpium podocarpum 枝叶 早渐新世 法国 [29]
    8 Podocarpium podocarpum 荚果&枝叶 早渐新世 法国 [20]
    9 Podocarpium podocarpum 枝叶 早渐新世 法国 [4]
    10 Podocarpium podocarpum 枝叶 晚渐新世 捷克 [4]
    11 Podocarpium podocarpum 荚果 中新世 中国,青海省泽库县 [23]
    12 Podocarpium podocarpum 荚果 中新世 中国,青海省泽库县 [30]
    13 Podocarpium podocarpum 荚果&枝叶 中中新世早期 中国,山东省临朐县山旺镇 [11]
    14 Podocarpium podocarpum 荚果&枝叶 早中新世 捷克 [31]
    15 Podocarpium podocarpum 荚果&枝叶 早中新世 捷克 [31]
    16 Podocarpium podocarpum 单叶 早中新世 捷克 [32]
    17 Podocarpium podocarpum 单叶 早中新世 捷克 [4]
    18 Podocarpium podocarpum 荚果&枝叶 早中新世 德国 [4]
    19 Podocarpium podocarpum / 早中新世 塞尔维亚 [1~2]
    20 Podocarpium podocarpum 荚果 早中新世 塞尔维亚 [1~2]
    21 Podocarpium podocarpum 荚果&单叶 早中新世 日本,本州岛北部 [33]
    22 Podocarpium podocarpum 荚果&枝叶 中中新世 德国 [20]
    23 Podocarpium podocarpum 荚果 早-中中新世 匈牙利 [34]
    24 Podocarpium podocarpum 单叶 中中新世早期 日本,长崎县 [1~2]
    25 Podocarpium podocarpum / 中中新世 意大利 [1~2]
    26 Podocarpium podocarpum / 中中新世 德国 [18]
    27 Podocarpium podocarpum / 中中新世 德国 [1~2]
    28 Podocarpium podocarpum / 中中新世 德国 [1~2]
    29 Podocarpium podocarpum / 中中新世 瑞士 [1~2]
    30 Podocarpium podocarpum 枝叶 中新世 中国,江苏省泗洪县 [35]
    31 Podocarpium podocarpum 枝叶 中新世 中国,江苏省南京市璞真森林农场 [6]
    32 Podocarpium podocarpum 枝叶 中新世 中国,江苏省南京市灵岩山 [6]
    33 Podocarpium podocarpum 枝叶 中新世 中国,江苏省黄冈市 [6]
    34 Podocarpium podocarpum 荚果 中中新世 匈牙利 [1~2]
    35 Podocarpium podocarpum 荚果&单叶 中中新世 日本,本州岛中北部 [36]
    36 Podocarpium podocarpum 荚果&枝叶 中中新世 中国,青海省德令哈市瑙格地区 当前研究
    37 Podocarpium podocarpum 枝叶&单叶 中中新世 日本 [1~2]
    38 Podocarpium podocarpum 荚果 中-晚中新世 匈牙利 [1~2]
    39 Podocarpium podocarpum 荚果 中中新世晚期 中国,云南开远市 [24]
    40 Podocarpium podocarpum 枝叶 中新世 中国,浙江省宁海县 [24]
    41 Podocarpium podocarpum 枝叶 中新世 中国,浙江省嵊县 [24]
    42 Podocarpium podocarpum / 中-晚中新世 罗马尼亚 [1~2]
    43 Podocarpium podocarpum 荚果 中-晚中新世 中国,浙江天台县 [30]
    44 Podocarpium podocarpum 枝叶 中-晚中新世 中国,浙江省绍兴市新昌县下屏山 [35]
    45 Podocarpium podocarpum 枝叶 中-晚中新世 哈萨克斯坦 [1~2]
    46 Podocarpium podocarpum 枝叶 中-晚中新世 波兰 [1~2]
    47 Podocarpium podocarpum 荚果&枝叶 晚中新世 德国 [1~2]
    48 Podocarpium podocarpum 荚果 晚中新世 瑞士 [4]
    49 Podocarpium podocarpum 荚果 晚中新世 瑞士 [1~2]
    50 Podocarpium podocarpum / 晚中新世 罗马尼亚 [1~2]
    51 Podocarpium podocarpum / 晚中新世 塞尔维亚 [1~2]
    52 Podocarpium podocarpum / 晚中新世 意大利 [1~2]
    53 Podocarpium podocarpum 荚果&枝叶 晚中新世 德国 [1~2]
    54 Podocarpium podocarpum / 晚中新世 罗马尼亚 [1~2]
    55 Podocarpium podocarpum 单叶 晚中新世 希腊,克里特岛 [1~2]
    56 Podocarpium podocarpum 单叶 中新世 日本,土岐市高野山 [1~2]
    57 Podocarpium podocarpum 荚果&单叶 中新世 奥地利 [21]
    58 Podocarpium podocarpum 枝叶&单叶 中新世 中国,青海省乌兰县 [24]
    59 Podocarpium podocarpum 枝叶&单叶 上新世 中国,江苏省南京市菊花台 [6]
    60 Podocarpium podocarpum 枝叶&单叶 上新世 中国,山西省晋中市太谷区 [1]
    61 Podocarpium podocarpum 荚果&枝叶 上新世 中国,山西省榆社县 [1]
    62 Podocarpium podocarpum 枝叶&单叶 上新世 中国,云南省元谋盆地 [1]
    下载: 导出CSV
  • [1]

    Li W C, Huang J, Chen L L, et al. Podocarpium (Fabaceae) from the Late Eocene of central Tibetan Plateau and its biogeographic implication[J]. Review of Palaeobotany and Palynology, 2022, 305: 104745. doi: 10.1016/j.revpalbo.2022.104745.

    [2]

    Han F, Yang T L, Zhang K X, et al. Early Oligocene Podocarpium (Leguminosae)from Qaidam Basin and its paleoecological and biogeographical implications[J]. Review of Palaeobotany and Palynology, 2020, 282: 104309. doi: 10.1016/j.revpalbo.2020.104309.

    [3]

    Heer O. Die Tertiäre Flora der Schweiz, Vol. 3[M]. Winterthur: Verlag der lithographischen Anstalt von Wurster and Comp. Schweiz: Karger Press, 1857: 1-94.

    [4]

    Kirchheimer F. Die Laubgewa¨chse der Braunkohlenzeit[M]. Halle: Veb Wilhelm Knapp Verlag. Germany: Alle Rechte Vorbehalten, 1957: 1-783.

    [5]

    Braun A. Ubersicht der Geognostischen und Allgemeinen Palaeontologischen Verhaltnisse Badens[M]//Stizenberger E ed. Ubersicht der Versteinerungen des Grosherzogthums Baden. Freiburg: Verlag der Universitats-Buchhandlung von J. Diernfellner, 1851: 8-143.

    [6]

    李浩敏, 邵家骥, 黄姜侬. 江苏南京地区晚第三纪植物[J]. 古生物学报, 1987, 26 (5): 563-575.

    Li Haomin, Shao Jiaji, Huang Jiangnong. Some Neogene plant fossils from Nanjing area, Jiangsu[J]. Acta Palaeontologica Sinica, 1987, 26(5): 563-575.

    [7]

    Raven P H, Polhill R M. Advances in Legume Systematics[M]. UK: Royal Botanic Gardens, 1981: 1-383.

    [8]

    Herendeen P S. Podocarpium Podocarpum comb. nov., the correct name for Podogonmm korrii Heer, nom. illeg. (fossil Fabaceae)[J]. Taxon, 1992, 41: 731-736. doi: 10.2307/1222400

    [9]

    中国新生代植物编写组. 中国植物化石第三册, 中国新生代植物[M]. 北京: 科学出版社, 1978: 1-383.

    WGCPC (Writing Group of Cenozoic Plants of China). Fossil Plants of China (Vol. 3): Cenozoic Plants from China[M]. Beijing: Science Press, 1978: 1-383.

    [10]

    Wang Q, Dilcher D L, Lott T A. Podocarpium A. Braun ex Stizenberger 1851 from the Middle Miocene of Eastern China, and its palaeoecology biogeography[J]. Acta Palaeobotanica, 2007, 47 (1): 237-251.

    [11]

    王祺. 山东中新世山旺植物群中豆荚属的名实问题[J]. 植物分类学报, 2006, 44 (2): 197-203.

    Wang Qi. On the identity of Podogonium Heer 1857, nom. illeg. (Leguminosae) from the Miocene Shanwang flora of Shandong[J]. Acta Phytotaxon Sinica, 2006, 44 (2): 197-203.

    [12]

    刘耕武. 伏平粉属(新属)Fupingopollenites gen. nov. 及其时空分布[J]. 古生物学报, 1985, 24 (1): 64-70+144.

    Liu Gengwu. Fupingopollenites gen. nov. and its distribution[J]. Acta Palaeontologica Sinica, 1985, 24 (1): 64-70+144.

    [13]

    Hantke R. Die Fossil Flora der Obermiozänen Oehninger-Fundstelle Schrotzburg (Schienerberg, SüdBaden)[D]. Zürich: The Doctor's Thesis of Eidgenössische Technische Hochschule Zürich, 1954: 1-118.

    [14]

    Rüffle L. Die obermiozäne (sarmatische) flora vom Randecker Maar[J]. Paläontologie Abhandlungen, 1963, 1 (3): 139-298.

    [15]

    Endo S, Fujiyama I. Some Late Mesozoic and Late Tertiary plants and a fossil insect from Thailand[M]//Kobayashi T, Toriyama R eds. Contributions to the Geology and Palaeontology of Southeast Asia 31. Tokyo: University of Tokyo Press, 1966: 191-194.

    [16]

    Ishida S. The Noroshi flora of Noto Peninsula, Central Japan[J]. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 1970, 37 (1): 1-112.

    [17]

    Chaney R. A Pliocene flora from Shansi province[J]. Bulletin of the Geological Society of China, 1933, 12 (1-2): 129-144. doi: 10.1111/j.1755-6724.1933.mp12001012.x

    [18]

    Gregor H J, Hantke R. Revision der fossilen Leguminosengattung Podogonium Heer (=Gleditsia Linné) aus dem europäischen Jungtertiär[J]. Feddes Repertorium, 1980, 91 (3): 151-182. doi: 10.1002/fedr.19800910303

    [19]

    Zastawniak E. Sarmatian leaf flora from the southern margin of the Holy Cross Mts. (South Poland)[J]. Prace Muzeum Ziemi, 1980, 33: 39-107.

    [20]

    Gregor H J. Zur flora des Randecker Maares (Miozän, Baden-Württemberg)[J]. Staatliches Museum für Naturkunde, 1986, 122B: 1-29.

    [21]

    Kovar-Eder J, Kvaček Z, Ströbitzer-Hermann M. The Miocene flora of Parschlug (Styria, Austria)—Revision and synthesis[J]. Annalen des Naturhistorischen Museums in Wien, Serie A, 2004, 105(A): 45-159.

    [22]

    Hu H H, Chaney R W. A Miocene flora from Shantung Province, China[J]. Palaeontologia Sinica, New Series A, 1940, 112: 1-147.

    [23]

    郭双兴. 青海泽库中新世植物群[J]. 古生物学报, 1980, 19 (5): 66-71.

    Guo Shuangxing. Miocene flora in Zekog County of Qinghai[J]. Acta Palaeontologica Sinica, 1980, 19 (5): 66-71.

    [24]

    Liu Y S, Guo S X, Ferguson D K. Catalogue of Cenozoic megafossil plants in China[J]. Palaeontographica Abteilung B, 1996, 238: 141-179.

    [25]

    孙博. 山旺植物化石[M]. 济南: 山东科学技术出版社, 1999: 1-167.

    Sun Bo. Shanwang Flora[M]. Jinan: Shandong Science and Technology Press, 1999: 1-167.

    [26]

    陶君容. 中国晚白垩世至新生代植物区系发展演变[M]. 北京: 科学出版社, 2000: 1-282.

    Tao Junrong. The Evolution of the Late Cretaceous-Cenozoic Floras in China[M]. Beijing: Science Press, 2000: 1-282.

    [27]

    刘耕武, 李代芸, 黄翡, 等. 云南元谋盆地上新世甘棠组植物和孢粉组合及其古气候意义[J]. 古生物学报, 2002, 41 (1): 1-9.

    Liu Gengwu, Li Daiyun, Huang Fei, et al. A Pliocene flora from the Gantang Formation of Yuanmou Basin, Yunnan Province, SW China and its paleoclimate significance[J]. Acta Palaeontologica Sinica, 2002, 41 (1): 1-9.

    [28]

    Xu Q Q, Qiu J, Zhou Z K, et al. Eocene Podocarpium (Leguminosae) from South China and its biogeographic implications[J]. Frontiers in Plant Science, 2015, 6: 1036. doi: 10.3389/fpls.2015.00938.

    [29]

    Yan D F, Zhang L, Han L, et al. Podocarpium from the Oligocene of NW Qaidam Basin, China and its implications[J]. Review of Palaeobotany and Palynology, 2018, 259: 1-9. doi: 10.1016/j.revpalbo.2018.09.009.

    [30]

    Li X C, Ma F J, Xiao L, He, et al. New records of Podocarpium A. Braun ex Stizenberger (Fabaceae) from the Oligocene to Miocene of China: Reappraisal of the phylogeographical history of the genus[J]. Review of Palaeobotany and Palynology, 2019, 260: 38-50. doi: 10.1016/j.revpalbo.2018.11.002.

    [31]

    Kvacek Z, Teodoridis V. Tertiary macrofloras of the Bohemian Massif: A review with correlations within Boreal and Central Europe[J]. Bulletin Geoscience, 2007, 82 (4): 383-408.

    [32]

    Teodoridis V. Tertiary flora and vegetation of the locality P ívlaky near Žatec (most basin)[J]. Acta Universitatis Carolinae—Geologica, 2003, 47 (1): 165-177.

    [33]

    Yabe A. Early Miocene terrestrial climate inferred from plant megafossil assemblages of the Joban and Soma areas, northeast Honshu, Japan[J]. Bulletin of the Geological Survey of Japan, 2008, 59 (7-8): 397-413.

    [34]

    Schaefer H, Hechenleitner P, Santos-Guerra A, et al. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages[J]. BMC Evolutionary Biology, 2012, 12: 1-19. doi. org/10.1186/1471-2148-12-250. doi: 10.1186/1471-2148-12-250

    [35]

    林启彬. 华东地区古生物图册(三)中、新生代分册[M]. 北京: 地质出版社, 1982: 1-608.

    Lin Qibin. Paleontological Atlas of East China Part 3, Volume of Mesozoic and Cenozoic[M]. Beijing: Geological Publishing House, 1982: 1-608.

    [36]

    Ishida S. The Noroshi flora of Noto Peninsula, Central Japan[J]. Memoirs of the Faculty of Science, Kyoto University: Series of Geology and Mineralogy, 1970, 37: 1-112.

    [37]

    Spicer R A, Su T, Valdes P J, et al. Why 'the uplift of the Tibetan Plateau' is a myth[J]. National Science Review, 2021, 8 (1): nwaa091. doi: 10.1093/nsr/nwaa091.

    [38]

    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28 (1): 211-280. doi: 10.1146/annurev.earth.28.1.211

    [39]

    Ding L, Spicer R A, Yang J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45 (3): 215-218. doi: 10.1130/G38583.1

    [40]

    汪品先. 新生代亚洲形变与海陆相互作用[J]. 地球科学——中国地质大学学报, 2005, 30 (1): 1-18.

    Wang Pinxian. Cenozoic deformation and history of sea-land interactions in Asia[J]. Earth Science—Journal of China University of Geosciences, 2005, 30 (1): 1-18.

    [41]

    李吉均, 方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998, 43 (15): 1569-1574.

    Li Jijun, Fang Xiaomin. Study on the uplift and environmental change of the Tibetan Plateau[J]. Chinese Science Bulletin, 1998, 43 (15): 1569-1574.

    [42]

    刘东生, 郑绵平, 郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究, 1998, (3): 194-203.

    Liu Tungsheng, Zheng Mianping, Guo Zhengtang. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia[J]. Quaternary Sciences, 1998, (3): 194-203.

    [43]

    An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411: 62-66. doi: 10.1038/35075035Medline.

    [44]

    Deng T, Wang X M, Wu F X, et al. Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau[J]. Global and Planetary Change, 2019, 174: 58-69. doi: 10.1016/j.gloplacha.2019.01.005.

    [45]

    Greenwood D R. Leaf form and the reconstruction of past climates[J]. New Phytologist, 2005, 166: 355-357. https://www.jstor.org/stable/1514678. doi: 10.1111/j.1469-8137.2005.01380.x https://www.jstor.org/stable/1514678

    [46]

    徐仁, 陶君容, 孙湘君. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J]. 植物学报, 1973, 15 (1): 102-109.

    Hsü Jen, Tao Junrong, Sun Xiangjun. On the discovery of a Quercus semicarpifolia bed in mount Shisha Pangma and its significance in botany and geology[J]. Acta Botanica Sinica, 1973, 15 (1): 102-109.

    [47]

    Molnar P, Boos W R, Battisti D S. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth & Planetary Sciences, 2010, 38 (1): 77-102.

    [48]

    魏新俊, 邵长铎, 王弭力. 柴达木盆地西部富钾盐湖物质组分、沉积特征及形成条件研究[M]. 北京: 地质出版社, 1993: 1-197.

    Wei Xinjun, Shao Changduo, Wang Erli. Study on the Material Composition, Sedimentary Characteristics, and Formation Conditions of Potassium Rich Salt Lakes in the Western Qaidam Basin[M]. Beijing: Geological Publishing House, 1993: 1-197.

    [49]

    张彭熹. 柴达木盆地盐湖[M]. 北京: 科学出版社, 1987: 1-235.

    Zhang Pengxi. Salt Lake in Qaidam Basin[M]. Beijing: Science Press, 1987: 1-235.

    [50]

    周立华. 青海省植被图 1 ︰ 1000000[M]. 北京: 中国科学技术出版社, 1990.

    Zhou Lihua. Vegetation Map of Qinghai Province 1 ︰ 1000000[M]. Beijing: Science and Technology of China Press, 1990.

    [51]

    Sun X J, Wang P X. How old is the Asian monsoon system?Palaeo-botanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222 (3-4): 181-222. doi: 10.1016/j.palaeo.2005.03.005

    [52]

    青海省地质矿产局. 青海省区域地质志[M]. 北京: 地质出版社, 1991: 1-664.

    Qinghai Provincial Bureau of Geology and Mineral Resources. Regional Geology of Qinghai Province[M]. Beijing: Geological Publishing House, 1991: 1-664.

    [53]

    杨用彪. 柴北缘新近纪磁性地层年代与沉积构造演化[D]. 兰州: 兰州大学硕士学位论文, 2009: 1-106.

    Yang Yongbiao. Neogene Magnetostratigraphy Chronology and Sedimentary-Tectonic Evolution in the Northern Qaidam Basin[D]. Lanzhou: The Master's Thesis of Lanzhou University, 2009: 1-106.

    [54]

    Hickey L J. Classification of the architecture of Dicotyledonous leaves[J]. American Journal of Botany, 1973, 60 (1): 17-33. doi: 10.1002/j.1537-2197.1973.tb10192.x

    [55]

    Dilcher D L. Approaches to the identification of angiosperm leaf remains[J]. The Botanical Review, 1974, 40 (1): 1-157. doi: 10.1007/BF02860067

    [56]

    LAWG (Leaf Architecture Working Group). Manual of Leaf Architecture-Morphological Description and Categorization of Dicotyledonous and Net-veined Monocotyledonous Angiosperms[M]. Washington DC: Smithsonian Institution, 1999: 1-224.

    [57]

    Soltis P S, Soltis D E, Doyle J J. Molecular Systematics of Plants[M]. Boston: Springer, 1992: 1-480.

    [58]

    Mayr G, Wilde V. Eocene fossil is earliest evidence of flower-visiting by birds[J]. Biology Letters, 2014, 10 (5): 1-4.

    [59]

    Matthiessen J, Knies J, Vogt C, et al. Pliocene palaeoceanography of the Arctic Ocean and subarctic seas[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367 (1886): 21-48. doi: 10.1098/rsta.2008.0203

    [60]

    Wu F L, Fang X M, Yang Y B, et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3 (10): 684-700.

    [61]

    Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294 (5547): 1671-1677. doi: 10.1126/science.105978

    [62]

    Li S F, Valdes P J, Farnsworth A, et al. Orographic evolution of northern Tibet shaped vegetation and plant diversity in Eastern Asia[J]. Science Advances, 2021, 7 (5): eabc7741. doi: 10.1126/sciadv.abc7741.

    [63]

    Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369 (6509): 1383-1387. doi: 10.1126/science.aba6853

    [64]

    杜金龙, 田军. 陆-海碳收支过程驱动的晚中新世气候-碳循环耦合演变机制[J]. 第四纪研究, 2023, 43 (6): 1675-1687. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2023.06.13

    Du Jinlong, Tian Jun. On the carbon-climate dynamics driven by land-sea carbon budget during the Late Miocene[J]. Quaternary Sciences, 2023, 43 (6): 1675-1687. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2023.06.13

    [65]

    Su T, Spicer R A, Wu F X, et al. A Middle Eocene lowland humid subtropical "Shangri-La" ecosystem in central Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (25): 32989-32995.

    [66]

    Zhang X W, Gélin U, Spicer R A, et al. Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet[J]. Nature Communications, 2022, 13 (1): 3787. http://creativecommons.org/licenses/by/4.0/. doi: 10.1038/s41467-022-31512-z http://creativecommons.org/licenses/by/4.0/

    [67]

    Ding L, Xu Q, Yue Y, et al. The andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264. doi: 10.1016/j.epsl.2014.01.045.

    [68]

    孙继敏, 刘卫国, 柳中晖, 等. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响[J]. 中国科学院院刊, 2017, 32 (9): 951-958.

    Sun Jimin, Liu Weiguo, Liu Zhonghui, et al. Effects of the uplift of the Tibetan Plateau and retreat of Neotethys Ocean on the stepwise aridification of mid-latitude Asian interior[J]. Bulletin of Chinese Academy of Sciences, 2017, 32 (9): 951-958.

    [69]

    Xiong Z Y, Liu X, Ding L, et al. The rise and demise of the Paleogene central Tibetan Valley[J]. Science Advances, 2022, 8 (6): eabj0944. doi: 10.1126/sciadv.abj0944.

    [70]

    Ding L, Kapp P, Cai F, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3 (10): 652-67.

    [71]

    Song B W, Spicer R A, Zhang K X, et al. Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the Early Oligocene[J]. Earth and Planetary Science Letters, 2020, 537: 116175. doi: 10.1016/j.epsl.2020.116175.

    [72]

    Li X C, Manchester S R, Wang Q, et al. A unique record of Cercis from the late Early Miocene of interior Asia and its significance for paleoenvironments and paleophytogeography[J]. Journal of Systematics and Evolution, 2021, 59 (6): 1321-1338.

    [73]

    Miao Y F, Fang X M, Sun J M, et al. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau[J]. Science, 2022, 378 (6624): 1074-1079. doi: 10.1126/science.abo2475

    [74]

    Zhang R, Jiang D B, Liu X D, et al. Modeling the climate effects of different subregional uplifts within the Himalaya-Tibetan Plateau on Asian summer monsoon evolution[J]. Chinese Science Bulletin, 2012, 57 (35): 4617-4626.

    [75]

    Liu X D, Sun H, Miao Y F, et al. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment[J]. Quaternary Science Reviews, 2015, 116: 1-14. doi: 10.1016/j.quascirev.2015.03.010.

    [76]

    Ding W N, Ree R H, Spicer R A, et al. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora[J]. Science, 2020, 369 (6503): 578-581.

  • 加载中

(7)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-09-02
修回日期:  2024-10-05
刊出日期:  2024-11-30

目录