喜马拉雅山脉中段卓奥友峰上新世植物群的再发现及其特征

覃星源, 刘佳, 宋艾, 高毅, 陈君梅, 李树峰, 苏涛. 喜马拉雅山脉中段卓奥友峰上新世植物群的再发现及其特征[J]. 第四纪研究, 2024, 44(6): 1495-1508. doi: 10.11928/j.issn.1001-7410.2024.06.03
引用本文: 覃星源, 刘佳, 宋艾, 高毅, 陈君梅, 李树峰, 苏涛. 喜马拉雅山脉中段卓奥友峰上新世植物群的再发现及其特征[J]. 第四纪研究, 2024, 44(6): 1495-1508. doi: 10.11928/j.issn.1001-7410.2024.06.03
覃星源, 刘佳, 宋艾, 高毅, 陈君梅, 李树峰, 苏涛. 喜马拉雅山脉中段卓奥友峰上新世植物群的再发现及其特征[J]. 第四纪研究, 2024, 44(6): 1495-1508. doi: 10.11928/j.issn.1001-7410.2024.06.03 QIN Xingyuan, LIU Jia, SONG Ai, GAO Yi, CHEN Junmei, LI Shufeng, SU Tao. The rediscovery of the Pliocene flora from Mt. Cho Oyu, central Himalaya and its characteristics[J]. Quaternary Sciences, 2024, 44(6): 1495-1508. doi: 10.11928/j.issn.1001-7410.2024.06.03
Citation: QIN Xingyuan, LIU Jia, SONG Ai, GAO Yi, CHEN Junmei, LI Shufeng, SU Tao. The rediscovery of the Pliocene flora from Mt. Cho Oyu, central Himalaya and its characteristics[J]. Quaternary Sciences, 2024, 44(6): 1495-1508. doi: 10.11928/j.issn.1001-7410.2024.06.03

喜马拉雅山脉中段卓奥友峰上新世植物群的再发现及其特征

  • 基金项目:

    国家自然科学基金项目(批准号: 42425201和42472016)和第二次青藏高原综合科学考察研究项目(批准号: 2019QZKK0705)共同资助

详细信息

The rediscovery of the Pliocene flora from Mt. Cho Oyu, central Himalaya and its characteristics

More Information
  • 本研究报道了产自喜马拉雅山脉中段卓奥友峰上新统加布拉组的植物大化石组合, 共鉴定出植物类群13科17属19种, 包括蕨类植物1种, 裸子植物2种, 被子植物16种。加布拉植物群植物生活型丰富, 包括乔木(云杉属、柏木属、桤木属和杨属)、灌木(小檗属、锦鸡儿属、栒子属、花楸属、金露梅属、沙棘属、杜鹃花属和忍冬属)、陆生草本(木贼属、蕨麻属和委陵菜属)、水生草本(眼子菜属和水毛茛属)。研究表明, 当时该地区的植被以云杉针叶林为主, 同时表现出植被分布的垂直地带性, 在云杉林上方生长着耐冷干的金露梅属、锦鸡儿属等高山灌丛, 下方为相对喜暖湿的桤木属等阔叶乔木。加布拉植物群的面貌与现今该地区以高寒草甸为主的植被面貌截然不同, 表明上新世以来该地区经历了明显的气候改变和植被演替。植物组合的特征显示, 上新世喜马拉雅山脉中段的气候较现今更为温暖湿润, 随着喜马拉雅山脉的持续抬升和高原干旱化进程的加剧, 导致该地区的植被由以暗针叶林为主转变成现今的高寒草甸。

  • 加载中
  • 图 1 

    加布拉植物群地理位置

    Figure 1. 

    The geographic location of Jiabula flora

    图 2 

    加布拉组地层剖面

    Figure 2. 

    The sections of the Jiabula Formation. (a)The locations of the research sections; (b)The stratigraphy of the research sections

    图 3 

    卓奥友峰加布拉植物群的化石形态(Ⅰ)

    Figure 3. 

    The morphology of plant fossils in Jiabula flora of Mt. Cho Oyu(Ⅰ)

    图 4 

    卓奥友峰加布拉植物群的化石形态(Ⅱ)

    Figure 4. 

    The morphology of plant fossils in Jiabula flora of Mt. Cho Oyu(Ⅱ)

    图 5 

    加布拉植物群植被示意图

    Figure 5. 

    The palaeovegetation reconstruction of Jiabula flora

    图 6 

    喜马拉雅中段的不同植被面貌

    Figure 6. 

    Different vegetation types of central Himalaya. (a)Alpine meadow composed of Carex parvula, Androsace tapete, etc. (Jiabula Valley, ca.5000 m); (b)Spruce forest composed of Picea smithiana, etc. (Gyirong County, ca.3000 m); (c)Alpine shrub composed of Caragana jubata, Dosiphora fruticose, etc. (Zhongba County, ca.4800 m); (d)Montane mixed coniferous and broad-leaved forest composed of Alnus nepalensis and Tsuga, etc. (Ronxar Valley, ca.2800 m).

    表 1 

    加布拉植物群物种名录(被子植物按APG Ⅳ系统[40]顺序排列)

    Table 1. 

    Taxa list of Jiabula flora(Angiosperms are arranged according to the Angiosperm Phylogeny Group(APG)Ⅳ system)[40]

    标本数量占比
    木贼科 Equisetaceae 木贼属 Equisetum 木贼(近似种)Equisetum cf. hyemale 0.7%
    松科 Pinaceae 云杉属 Picea 云杉属(未定种)Picea sp. 67.5%
    柏科 Cupressaceae 柏木属 Cupressus 柏木属(未定种)Cupressus sp. 6.0%
    眼子菜科 Potamogetonaceae 眼子菜属  Potamogeton 小眼子菜(近似种)Potamogeton cf. pusillus 0.7%
    小檗科 Berberidaceae 小檗属 Berberis 小檗属(未定种)Berberis sp. 3.3%
    毛茛科 Ranunculaceae 水毛茛属 Batrachium 毛柄水毛茛(近似种)Batrachium cf. trichophyllum 0.7%
    豆科 Fabaceae 锦鸡儿属  Caragana 鬼箭锦鸡儿(近似种)Caragana cf. jubata 4.0%
    锦鸡儿属(未定种)Caragana sp. 2.0%
    蔷薇科 Rosaceae 蕨麻属 Argentina 蕨麻(近似种)Argentina cf. anserina 1.3%
    栒子属 Cotoneaster 小叶栒子(近似种)Cotoneaster cf. microphyllus 0.7%
    花楸属 Sorbus 川滇花楸(近似种)Sorbus cf. vilmorinii 0.7%
    委陵菜属 Potentilla 关节委陵菜(近似种)Potentilla cf. articulata 0.7%
    金露梅属 Dasiphora 小叶金露梅(近似种)Dasiphora cf. parvifolia 2.0%
    金露梅属(未定种)Dasiphora sp. 0.7%
    胡颓子科 Elaeagnaceae 沙棘属 Hippophae 沙棘(近似种)Hippophae cf. rhamnoides 2.6%
    桦木科 Betulaceae 桤木属 Alnus 桤木属(未定种)Alnus sp. 2.0%
    杨柳科 Salicaceae 杨属 Populus 杨属(未定种)Populus sp. 1.3%
    杜鹃花科 Ericaceae 杜鹃花属 Rhododendron 杜鹃花属(未定种)Rhododendron sp. 2.0%
    忍冬科 Caprifoliaceae 忍冬属 Lonicera 越橘叶忍冬(近似种)Lonicera cf. angustifolia var. myrtillus 1.3%
    下载: 导出CSV
  • [1]

    An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411 (6833): 62-66. doi: 10.1038/35075035

    [2]

    Ding L, Kapp P, Cai F L, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3 (10): 652-667.

    [3]

    叶笃正, 高由禧, 陈乾. 青藏高原及其紧邻地区夏季环流的若干特征[J]. 大气科学, 1977, 1 (4): 289-299. doi: 10.3878/j.issn.1006-9895.1977.04.06

    Ye Duzheng, Gao Youxi, Chen Qian. On some features of the summer atmospheric circulation over the Tsinghai-Tibetan Plateau and its neighbourhood[J]. Chinese Journal of Atmospheric Sciences, 1977, 1 (4): 289-299. doi: 10.3878/j.issn.1006-9895.1977.04.06

    [4]

    施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报, 1999, 54 (1): 10-20. doi: 10.3321/j.issn:0375-5444.1999.01.002

    Shi Yafeng, Li Jijun, Li Bingyuan, et al. Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during Late Cenozoic[J]. Acta Geographica Sinica, 1999, 54 (1): 10-20. doi: 10.3321/j.issn:0375-5444.1999.01.002

    [5]

    Singh J S, Singh S P. Forest vegetation of the Himalaya[J]. The Botanical Review, 1987, 53 (1): 80-192. doi: 10.1007/BF02858183

    [6]

    张镱锂, 吴雪, 郑度. 喜马拉雅山脉中段土地覆被的垂直分异特征[J]. 地理学报, 2020, 75 (5): 931-948.

    Zhang Yili, Wu Xue, Zheng Du. Vertical variation of land cover in the central Himalayas[J]. Acta Geographica Sinica, 2020, 75 (5): 931-948.

    [7]

    Ding W N, Ree R H, Spicer R A, et al. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora[J]. Science, 2020, 369 (6503): 578-581. doi: 10.1126/science.abb4484

    [8]

    Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403 (6772): 853-858. doi: 10.1038/35002501

    [9]

    吴福元, 黄宝春, 叶凯, 等. 青藏高原造山带的垮塌与高原隆升[J]. 岩石学报, 2008, 24 (1): 1-30.

    Wu Fuyuan, Huang Baochun, Ye Kai, et al. Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau[J]. Acta Petrologica Sinica, 2008, 24 (1): 1-30.

    [10]

    王成善, 戴紧根, 刘志飞, 等. 西藏高原与喜马拉雅的隆升历史和研究方法: 回顾与进展[J]. 地学前缘, 2009, 16 (3): 1-30. doi: 10.3321/j.issn:1005-2321.2009.03.001

    Wang Chengshan, Dai Jingen, Liu Zhifei, et al. The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques: A review[J]. Earth Science Frontiers, 2009, 16 (3): 1-30. doi: 10.3321/j.issn:1005-2321.2009.03.001

    [11]

    Clift P D, Vannucchi P, Morgan J P. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust[J]. Earth-Science Reviews, 2009, 97 (1-4): 80-104. doi: 10.1016/j.earscirev.2009.10.003

    [12]

    Spicer R A, Yang J, Spicer T E V, et al. Woody dicot leaf traits as a palaeoclimate proxy: 100 years of development and application[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110138. doi: 10.1016/j.palaeo.2020.110138.

    [13]

    Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years[J]. Nature, 2003, 421 (6923): 622-624. doi: 10.1038/nature01356

    [14]

    Wang Y, Deng T, Biasatti D. Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma[J]. Geology, 2006, 34 (4): 309-312. doi: 10.1130/G22254.1

    [15]

    Zhou Z K, Yang Q S, Xia K. Fossils of Quercus sect. Heterobalanus can help explain the uplift of the Himalayas[J]. Chinese Science Bulletin, 2007, 52 (2): 238-247. doi: 10.1007/s11434-007-0005-7

    [16]

    Ding L, Spicer R A, Yang J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45 (3): 215-218. doi: 10.1130/G38583.1

    [17]

    Huang J, Su T, Li S F, et al. Pliocene flora and paleoenvironment of Zanda Basin, Tibet, China[J]. Science China: Earth Sciences, 2020, 63 (2): 212-223. doi: 10.1007/s11430-019-9475-2

    [18]

    Garzione C N, Dettman D L, Quade J, et al. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal[J]. Geology, 2000, 28 (4): 339-342. doi: 10.1130/0091-7613(2000)28<339:HTOTTP>2.0.CO;2

    [19]

    Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the high Himalaya since the Late Miocene[J]. Earth and Planetary Science Letters, 2001, 188 (1-2): 253-268. doi: 10.1016/S0012-821X(01)00324-7

    [20]

    Murphy M A, Saylor J E, Ding L. Late Miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history[J]. Earth and Planetary Science Letters, 2009, 282 (1-4): 1-9. doi: 10.1016/j.epsl.2009.01.006

    [21]

    Gébelin A, Mulch A, Teyssier C, et al. The Miocene elevation of Mount Everest[J]. Geology, 2013, 41 (7): 799-802. doi: 10.1130/G34331.1

    [22]

    Huntington K W, Saylor J, Quade J, et al. High Late Miocene-Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry[J]. Geological Society of America Bulletin, 2015, 127 (1-2): 181-199. doi: 10.1130/B31000.1

    [23]

    Chen C H, Bai Y, Fang X M, et al. Lower-altitude of the Himalayas before the mid-Pliocene as constrained by hydrological and thermal conditions[J]. Earth and Planetary Science Letters, 2020, 545: 116422. doi: 10.1016/j.epsl.2020.116422.

    [24]

    Liu X H, Xu Q, Ding L. Differential surface uplift: Cenozoic paleoelevation history of the Tibetan Plateau[J]. Science China: Earth Sciences, 2016, 59 (11): 2105-2120. doi: 10.1007/s11430-015-5486-y

    [25]

    Zhou Z K, Liu J, Chen L L, et al. Cenozoic plants from Tibet: An extraordinary decade of discovery, understanding and implications[J]. Science China: Earth Sciences, 2023, 66 (2): 205-226. doi: 10.1007/s11430-022-9980-9

    [26]

    徐仁, 陶君容, 孙湘君. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J]. 植物学报, 1973, 15 (1): 103-119.

    Xu Ren, Tao Junrong, Sun Xiangjun. On the discovery of a Quercus semicarpifolia bed in Mount Shisha Pangma and its significance in botany and geology[J]. Acta Botanica Sinica, 1973, 15 (1): 103-119.

    [27]

    苏涛, 刘佳, 陈琳琳, 等. 希夏邦马峰高山栎类化石的再发现及其意义[J]. 岩石学报, 2024, 40 (5): 1382-1393.

    Su Tao, Liu Jia, Chen Linlin, et al. The rediscovery of alpine oak (Heterobalanus group, Quercus section Ilex, Fagaceae) fossils from Mount Shisha Pangma and its significance[J]. Acta Petrologica Sinica, 2024, 40 (5): 1382-1393.

    [28]

    徐仁, 孔昭宸, 孙湘君, 等. 珠穆朗玛峰地区第四纪古植物学的研究和喜马拉雅山的上升[J]. 科学通报, 1973, 18 (6): 274-279.

    Xu Ren, Kong Zhaozhen, Sun Xiangjun, et al. Quaternary botany research of the Mt. Everest region and the uplifting of the Himalayas[J]. Chinese Science Bulletin, 1973, 18 (6): 274-279.

    [29]

    周昆叔, 陈硕民, 叶永英, 等. 根据孢粉分析的资料探讨珠穆朗玛峰地区第四纪古地理的一些问题[J]. 地质科学, 1973, 8 (2): 133-151.

    Zhou Kunshu, Chen Shuomin, Ye Yongying, et al. Some problems of Quarternary palaeogeography in Mount Jolmo Lungma region from sporo-pollen analysis data[J]. Chinese Journal of Geology, 1973, 8 (2): 133-151.

    [30]

    郑本兴, 施雅风. 珠穆朗玛峰地区第四纪冰期探讨[M]//中国科学院西藏科学考察队. 珠穆朗玛峰地区科学考察报告(1966-1968): 第四纪地质. 北京: 科学出版社, 1976: 29-62.

    Zheng Benxing, Shi Yafeng. Discussion on Quaternary glaciations in the Mount Everest region[M]//Tibet Scientific Expedition Team, Chinese Academy of Sciences. Scientific Expedition Report on the Mount Everest Region (1966-1968): Quaternary Geology. Beijing: Science Press, 1976: 29-62.

    [31]

    中国科学院植物研究所. 西藏植被[M]. 北京: 科学出版社, 1988: 1-589.

    Institute of Botany, Chinese Academy of Sciences. Vegetation of Tibet[M]. Beijing: Science Press, 1988: 1-589.

    [32]

    赵希涛, 郭旭东, 高福清. 珠穆朗玛峰地区第四纪地层[M]//中国科学院西藏科学考察队. 珠穆朗玛峰地区科学考察报告(1966-1968): 第四纪地质. 北京: 科学出版社, 1976: 1-28.

    Zhao Xitao, Guo Xudong, Gao Fuqing. Quaternary strata of the Mount Everest region[M]//Tibet Scientific Expedition Team, Chinese Academy of Sciences. Scientific Expedition Report on the Mount Everest Region (1966-1968): Quaternary Geology. Beijing: Science Press, 1976: 1-28.

    [33]

    周慕林, 闵隆瑞, 王淑芳. 中国地层典——第四系[M]. 北京: 地质出版社, 2000: 45.

    Zhou Mulin, Min Longrui, Wang Shufang. Stratigraphic Chart of China—Quaternary[M]. Beijing: Geological Publishing House, 2000: 45.

    [34]

    赵越, 钱方, 朱大岗, 等. 青藏高原第四纪冰川的早期记录及其构造与气候含义[J]. 中国地质, 2009, 36 (6): 1195-1207. doi: 10.3969/j.issn.1000-3657.2009.06.001

    Zhao Yue, Qian Fang, Zhu Dagang, et al. Early records of Quaternary glaciation in Qinghai-Tibet Plateau and their tectonic and climatic implications[J]. Geology in China, 2009, 36 (6): 1195-1207. doi: 10.3969/j.issn.1000-3657.2009.06.001

    [35]

    黄万波, 计宏祥, 陈万勇, 等. 西藏吉隆、布隆盆地的上新世地层[M]//中国科学院青藏高原综合科学考察队. 西藏古生物(第一分册). 北京: 科学出版社, 1980: 4-17.

    Huang Wanbo, Ji Hongxiang, Chen Wanyong, et al. Pliocene strata in the Gyirong and Burang basins of Tibet[M]//Scientific Expedition Team of Qinghai-Tibetan Plateau, Chinese Academy of Sciences. Paleontology of Tibet (Volume 1). Beijing: Science Press, 1980: 4-17.

    [36]

    李炳元, 张青松. 对西藏南部第四纪冰期划分的几点意见[J]. 冰川冻土, 1980, 2 (3): 52-55.

    Li Bingyuan, Zhang Qingsong. Some opinions on the division of Quaternary glaciations in southern Tibet[J]. Journal of Glaciology and Geocryology, 1980, 2 (3): 52-55.

    [37]

    王富葆, 李升峰, 张捷, 等. 吉隆盆地的形成演化、环境变迁与喜马拉雅山隆起[J]. 中国科学(D辑), 1996, 26 (4): 329-335.

    Wang Fubao, Li Shengfeng, Zhang Jie, et al. Formation, evolution, and environmental changes of the Gyirong Basin and uplift of the Himalaya[J]. Science in China (Series D), 1996, 26 (4): 329-335.

    [38]

    Wang Y, Zheng M P, Ling Y, et al. Quaternary integrative stratigraphy, biotas, and paleogeographical evolution of the Qinghai-Tibetan Plateau and its surrounding areas[J]. Science China: Earth Sciences, 2024, 67 (4): 1360-1394. doi: 10.1007/s11430-023-1214-7

    [39]

    Ellis B, Daly D, Hickey L J, et al. Manual of Leaf Architecture[M]. New York: Cornell University Press, 2009: 1-190.

    [40]

    Byng J W, Chase M W, Christenhusz M J M, et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG Ⅳ[J]. Botanical Journal of the Linnean Society, 2016, 181 (1): 1-20. doi: 10.1111/boj.12385

    [41]

    Harber J. Three new species of Berberis from Yunnan[J]. Curtis's Botanical Magazine, 2016, 33 (1): 24-31. doi: 10.1111/curt.12132_1

    [42]

    中国科学院中国植物志编辑委员会. 中国植物志(第三十六卷)[M]. 北京: 科学出版社, 1974: 160-337.

    Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China (Volume 36)[M]. Beijing: Science Press, 1974: 160-337.

    [43]

    中国科学院中国植物志编辑委员会. 中国植物志(第三十七卷)[M]. 北京: 科学出版社, 1985: 257-258.

    Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China (Volume 37)[M]. Beijing: Science Press, 1985: 257-258.

    [44]

    Xu H, Su T, Zhou Z K. Leaf and infructescence fossils of Alnus (Betulaceae) from the Late Eocene of the southeastern Qinghai-Tibetan Plateau[J]. Journal of Systematics and Evolution, 2019, 57 (2): 105-113. doi: 10.1111/jse.12463

    [45]

    Mo Z Q, Fu C N, Zhu M S, et al. Resolution, conflict and rate shifts: Insights from a densely sampled plastome phylogeny for Rhododendron (Ericaceae)[J]. Annals of Botany, 2022, 130 (5): 687-701. doi: 10.1093/aob/mcac114

    [46]

    中国科学院中国植物志编辑委员会. 中国植物志(第七十二卷)[M]. 北京: 科学出版社, 1988: 155-156.

    Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China (Volume 72)[M]. Beijing: Science Press, 1988: 155-156.

    [47]

    Liu J, Song A, Ding L, et al. Paleogene integrative stratigraphy, biotas, and paleogeographical evolution of the Qinghai-Tibetan Plateau and its surrounding areas[J]. Science China: Earth Sciences, 2024, 67 (4): 1290-1325. doi: 10.1007/s11430-023-1182-0

    [48]

    Saylor J E, Quade J, Dettman D L, et al. The Late Miocene through present paleoelevation history of southwestern Tibet[J]. American Journal of Science, 2009, 309 (1): 1-42. doi: 10.2475/01.2009.01

    [49]

    Deng T, Fang X M, Li Q, et al. Neogene integrative stratigraphy, biotas, and paleogeographical evolution of the Qinghai-Tibetan Plateau and its surrounding areas[J]. Science China: Earth Sciences, 2023, 67 (4): 1326-1359.

    [50]

    Johnson N M, Stix J, Tauxe L, et al. Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan[J]. The Journal of Geology, 1985, 93 (1): 27-40. doi: 10.1086/628917

    [51]

    Mehrotra R C, Awasthi N, Dutta S K. Study of fossil wood from the upper Tertiary sediments (Siwalik) of Arunachal Pradesh, India and its implication in palaeoecological and phytogeographical interpretations[J]. Review of Palaeobotany and Palynology, 1999, 107 (3-4): 223-247. doi: 10.1016/S0034-6667(99)00029-9

    [52]

    Prasad M. Angiospermous fossil leaves from the Siwalik foreland basins and their palaeoclimatic implications[J]. The Palaeobotanist, 2008, 57 (1-3): 177-215.

    [53]

    Khan M A, Bera M, Spicer R A, et al. Floral diversity and environment during the middle Siwalik sedimentation (Pliocene) in the Arunachal sub-Himalaya[J]. Palaeobiodiversity and Palaeoenvironments, 2019, 99 (3): 401-424. doi: 10.1007/s12549-018-0351-2

    [54]

    Srivastava G, Farnsworth A, Bhatia H, et al. Climate and vegetation change during the upper Siwalik—A study based on the palaeobotanical record of the eastern Himalaya[J]. Palaeobiodiversity and Palaeoenvironments, 2021, 101 (1): 103-121. doi: 10.1007/s12549-020-00457-w

    [55]

    Adhikari P, Bhatia H, Khatri D B, et al. Plant fossils from the middle Siwalik of eastern Nepal and their climatic and phytogeographic significance[J]. Palaeobiodiversity and Palaeoenvironments, 2023, 103 (1): 57-69. doi: 10.1007/s12549-022-00523-5

    [56]

    Khan M A, Mahato S, Spicer R A, et al. Siwalik plant megafossil diversity in the eastern Himalayas: A review[J]. Plant Diversity, 2023, 45 (3): 243-264. doi: 10.1016/j.pld.2022.12.003

    [57]

    曹流. 西藏普兰涕松上新世孢粉植物群[J]. 古生物学报, 1982, 21 (4): 469-483.

    Cao Liu. Pliocene palynological flora in Disong of Burang, Xizang (Tibet)[J]. Acta Palaeontologica Sinica, 1982, 21 (4): 469-483.

    [58]

    黄赐璇, 李炳元, 张青松, 等. 西藏亚汝雄拉达涕古湖盆湖相沉积的时代和孢粉分析[M]//中国科学院青藏高原综合科学考察队. 西藏古生物(第一分册). 北京: 科学出版社, 1980: 97-106.

    Huang Cixuan, Li Bingyuan, Zhang Qingsong, et al. The lacustrine deposited age of Dati paleobasin in Yaruxiongla, Tibet, and its palynological analysis[M]//Scientific Expedition Team of Qinghai-Tibetan Plateau, Chinese Academy of Sciences. Paleontology of Tibet (Volume 1). Beijing: Science Press, 1980: 97-106.

    [59]

    吴旌, 徐亚东, 张克信, 等. 西藏西南部札达盆地新近纪的孢粉组合[J]. 地质通报, 2013, 32 (1): 141-153. doi: 10.3969/j.issn.1671-2552.2013.01.014

    Wu Jing, Xu Yadong, Zhang Kexin, et al. Neogene palynological assemblages in Zanda Basin, southwestern Tibet[J]. Geological Bulletin of China, 2013, 32 (1): 141-153. doi: 10.3969/j.issn.1671-2552.2013.01.014

    [60]

    李建国, 周勇. 西藏西部札达盆地上新世孢粉植物群及古环境[J]. 微体古生物学报, 2001, 18 (1): 89-96. doi: 10.3969/j.issn.1000-0674.2001.01.010

    Li Jianguo, Zhou Yong. Pliocene palynoflora from the Zanda Basin, West Xizang (Tibet), and the palaeoenvironment[J]. Acta Micropalaeontologica Sinica, 2001 (1): 89-96. doi: 10.3969/j.issn.1000-0674.2001.01.010

    [61]

    徐亚东, 张克信, 王国灿, 等. 西藏南部吉隆盆地中新世-早更新世孢粉组合带及其地质意义[J]. 地球科学——中国地质大学学报, 2010, 35 (5): 759-773.

    Xu Yadong, Zhang Kexin, Wang Guocan, et al. Geological significance of Miocene-Early Pleistocene palynological zones in the Gyirong Basin, southern Tibet[J]. Earth Science—Journal of China University of Geosciences, 2010, 35 (5): 759-773.

    [62]

    刘佳, 宋艾, 张馨文, 等. 吉隆盆地中中新世以来孢粉组合及古环境演化[J]. 岩石学报, 2024, 40 (5): 1418-1428.

    Liu Jia, Song Ai, Zhang Xinwen, et al. Palynological assemblages and paleoenvironmental evolution in the Gyirong Basin since the Middle Miocene[J]. Acta Petrologica Sinica, 2024, 40 (5): 1418-1428.

    [63]

    李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001, 21 (5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001 http://www.dsjyj.com.cn/article/id/dsjyj_9378

    Li Jijun, Fang Xiaomin, Pan Baotian, et al. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 2001, 21 (5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001 http://www.dsjyj.com.cn/article/id/dsjyj_9378

    [64]

    Gébelin A, Jessup M J, Teyssier C, et al. Infiltration of meteoric water in the South Tibetan Detachment (Mount Everest, Himalaya): When and why?[J]. Tectonics, 2017, 36 (4): 690-713. doi: 10.1002/2016TC004399

    [65]

    Garzione C N, Quade J, DeCelles P G, et al. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya[J]. Earth and Planetary Science Letters, 2000, 183 (1-2): 215-229. doi: 10.1016/S0012-821X(00)00252-1

    [66]

    Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369 (6509): 1383-1387. doi: 10.1126/science.aba6853

    [67]

    Zhang M L, Fritsch P W. Evolutionary response of Caragana (Fabaceae)to Qinghai-Tibetan Plateau uplift and Asian interior aridification[J]. Plant Systematics and Evolution, 2010, 288 (3): 191-199.

  • 覃星源附件图1
  • 加载中

(6)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-08-09
修回日期:  2024-10-15
刊出日期:  2024-11-30

目录